3,399 research outputs found

    METHOD DEVELOPMENT AND VALIDATION FOR THE SIMULTANEOUS ESTIMATION OF ASCORBIC ACID AND FOLIC ACID VITAMINS BY REVERSE-PHASE HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY METHOD IN CYANOBACTERIAL METABOLITES AND NUTRACEUTICAL FORMULATION

    Get PDF
    Objective: It was aimed to estimate ascorbic acid (ASC) and folic acid (FLC) in cyanobacterial metabolite by the reverse-phase high-performanceliquid chromatography (RP-HPLC) method, and the work was also extended to nutraceutical formulation.Methods: RP-HPLC method were developed for simultaneous estimation of two vitamins ASC and FLC in cyanobacterial metabolite and nutraceuticalusing isosbestic point at wavelength 280 nm. Method was selected after calculating system suitability and validated as per ICH guidelines.Results: The developed analytical method parameters found within limits prescribed by ICH and USP guidelines. The retention time was found to be2.334 and 3.892, respectively, for ASC and FLC. Limit of detection and limit of quantification for ASC and FLC were found to be 0.087 and 0.263 µg/ml,0.052 and 0.159 µg/ml, respectively. Recovery studies show that method is capable of recovering analytes from its formulation. The method is meetingthe criteria for validation as per the guidelines.Conclusion: The method is simple, precise, specific, and accurate. The newly developed method can be used in pharmaceutical industry for routineanalysis of ASC and FLC in tablet dosage form.Keywords: Cyanobacteria, Nutraceutical, Reverse-phase high-performance liquid chromatography, Ascorbic acid, Folic acid, Vitamins, Metabolites

    Prediction of Task-Related BOLD fMRI with Amplitude Signatures of Resting-State fMRI

    Get PDF
    Blood oxygen contrast-functional magnetic resonance imaging (fMRI) signals are a convolution of neural and vascular components. Several studies indicate that task-related (T-fMRI) or resting-state (R-fMRI) responses linearly relate to hypercapnic task responses. Based on the linearity of R-fMRI and T-fMRI with hypercapnia demonstrated by different groups using different study designs, we hypothesized that R-fMRI and T-fMRI signals are governed by a common physiological mechanism and that resting-state fluctuation of amplitude (RSFA) should be linearly related to T-fMRI responses. We tested this prediction in a group of healthy younger humans where R-fMRI, T-fMRI, and hypercapnic (breath hold, BH) task measures were obtained form the same scan session during resting state and during performance of motor and BH tasks. Within individual subjects, significant linear correlations were observed between motor and BH task responses across voxels. When averaged over the whole brain, the subject-wise correlation between the motor and BH tasks showed a similar linear relationship within the group. Likewise, a significant linear correlation was observed between motor-task activity and RSFA across voxels and subjects. The linear rest–task (R–T) relationship between motor activity and RSFA suggested that R-fMRI and T-fMRI responses are governed by similar physiological mechanisms. A practical use of the R–T relationship is its potential to estimate T-fMRI responses in special populations unable to perform tasks during fMRI scanning. Using the R–T relationship determined from the first group of 12 healthy subjects, we predicted the T-fMRI responses in a second group of 7 healthy subjects. RSFA in both the lower and higher frequency ranges robustly predicted the magnitude of T-fMRI responses at the subject and voxel levels. We propose that T-fMRI responses are reliably predictable to the voxel level in situations where only R-fMRI measures are possible, and may be useful for assessing neural activity in task non-compliant clinical populations

    Statistical Learning for Resting-State fMRI: Successes and Challenges

    Get PDF
    International audienceIn the absence of external stimuli, fluctuations in cerebral activity can be used to reveal intrinsic structures. Well-conditioned probabilistic models of this so-called resting-state activity are needed to support neuroscientific hypotheses. Exploring two specific descriptions of resting-state fMRI, namely spatial analysis and connectivity graphs, we discuss the progress brought by statistical learning techniques, but also the neuroscientific picture that they paint, and possible modeling pitfalls

    Quantification of yield gaps in rain-fed rice, wheat, cotton and mustard in India

    Get PDF
    Rainfed farming / Crop yield / Simulation / Rice / Wheat / Cotton / Mustard / India

    Dictionary Learning and Sparse Coding-based Denoising for High-Resolution Task Functional Connectivity MRI Analysis

    Full text link
    We propose a novel denoising framework for task functional Magnetic Resonance Imaging (tfMRI) data to delineate the high-resolution spatial pattern of the brain functional connectivity via dictionary learning and sparse coding (DLSC). In order to address the limitations of the unsupervised DLSC-based fMRI studies, we utilize the prior knowledge of task paradigm in the learning step to train a data-driven dictionary and to model the sparse representation. We apply the proposed DLSC-based method to Human Connectome Project (HCP) motor tfMRI dataset. Studies on the functional connectivity of cerebrocerebellar circuits in somatomotor networks show that the DLSC-based denoising framework can significantly improve the prominent connectivity patterns, in comparison to the temporal non-local means (tNLM)-based denoising method as well as the case without denoising, which is consistent and neuroscientifically meaningful within motor area. The promising results show that the proposed method can provide an important foundation for the high-resolution functional connectivity analysis, and provide a better approach for fMRI preprocessing.Comment: 8 pages, 3 figures, MLMI201

    eta_c production at the Large Hadron Collider

    Full text link
    We have studied the production of the 1S_0 charmonium state, eta_c, at the Large Hadron Collider (LHC) in the framework of Non-Relativistic Quantum Chromodynamics (NRQCD) using heavy-quark symmetry. We find that NRQCD predicts a large production cross-section for this resonance at the LHC even after taking account the small branching ratio of eta_c into two photons. We show that it will be possible to test NRQCD through its predictions for eta_c, with the statistics that will be achieved at the early stage of the LHC, running at a center of mass energy of 7 TeV with an integrated luminosity of 100 pb^{-1}Comment: 8 pages, 2 figure
    corecore